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Flexible skin-like membranes have received considerable research interest for the cost-
effective monitoring of mesoscale (large-scale) structures. The authors have recently pro-
posed a large-area electronic consisting of a soft elastomeric capacitor (SEC) that trans-
duces a structure’s change in geometry (i.e. strain) into a measurable change in
capacitance. The SEC sensor measures the summation of the orthogonal strains (i.e.
ex þ ey). It follows that an algorithm is required for the decomposition of the sensor signal
into unidirectional strain maps. In this study, a new method enabling such decomposition,
leveraging a dense sensor network of SECs and resistive strain gauges (RSGs), is proposed.
This method, termed iterative signal fusion (ISF), combines the large-area sensing capabil-
ity of SECs and the high-precision sensing capability of RSGs. The proposed ISF method
adaptively fuses the different sources of signal information (e.g. from SECs and RSGs) to
build a structure’s best fit unidirectional strain maps. Each step of ISF contains an update
process for strain maps based on the Kriging model. To demonstrate the accuracy of the
proposed method, an experimental test bench is developed, which is the largest deploy-
ment of the SEC-based sensing skin to date in terms of both size and sensor count. A net-
work of 40 SECs deployed on a grid (5 � 8) is utilized and an optimal sensor placement
algorithm is used to select the optimal RSG sensor locations within the network of SECs.
Results show that the proposed ISF method is capable of reconstructing unidirectional
strain maps for the experimental test plate. In addition to the experimental data, a numer-
ical validation for the ISF method is provided through a finite element analysis model of the
experimental test bench.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Traditionally, mesoscale structural systems, including aerospace structures, energy systems and civil infrastructures are
investigated and maintained using break-down based and time-based [1] strategies. An alternative is condition-based main-
tenance, which is known to have strong economic benefits for owners, operators, and society [2,3]. Structural health mon-
itoring (SHM) and life prediction are among the key components of condition based maintenance [4,5]. SHM is defined as the
automation of damage detection, localization, and prognosis of structural systems and components. A major challenge in the
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SHM of mesoscale structural systems is the distinction of global versus local faults [6–8].Also, since the monitored mesoscale
structures can be geometrically complex [7], the selection of sensors and models capable of performing SHM can be chal-
lenging [6]. Of particular importance in the development of an SHM system is the consideration of sensor density. The
use of dense sensor networks (DSNs) for SHM applications have attracted interest in recent years [8–12].

When compared to traditional sparse sensor networks, a DSN will provide for greater detection and localization of local-
ized damage, including cracks [13,14], material delamination [15,16], corrosion [17], and loosening of bolts [18,19]. While a
DSN has its advantages, it faces challenges in terms of high hardware requirements, complex installation, and high data man-
agement costs [19]. Recently, through the use of micro-fabrication techniques [9,20] and advances in the field of flexible
electronics [21], skin-like sensing membranes have been proposed as a solution for simplifying the deployment and utiliza-
tion of DSNs. These DSNs would fully integrate sensing, data acquisition, data transmission, and power management into a
sensing skin. The term sensing skin is used because of their ability to mimic the capability of biological skin to detect and
localize events (e.g. damage, contact, temperature changes) over a large area [22].

Sensing skins for SHM applications have attracted significant attention in the last few years and various sensing skins
have been proposed and prototyped. These efforts have leveraged various technologies, including: resistive strain gauges
(RSGs) [9,11]; piezoceramic transducers and receivers [23,24]; carbon nanotube thin film strain sensors [25,26]; electrically
conductive paint [27]; graphitic porous sensor arrays on polyimide [20]; and photoactive nanocomposites [28]. The authors
have previously proposed a fully integrated sensing skin [10] based on a novel large-area electronic termed the soft elas-
tomeric capacitor (SEC) [29]. The SEC was designed to be inexpensive and benefits from an easily scalable manufacturing
process. In contrast with traditional strain sensors (e.g. RSG, fiber optic, and vibrating wire) that measure unidirectional
strain at discrete points, the SEC measures the additive strain over an area. The SEC and its additive strain signal have been
used for fatigue crack detection [14] as well as damage detection and localization over large areas [30]. However, in cases
where the unidirectional strain maps of a structure are desired, it is imperative that the sensor’s additive signal be decom-
posed into its unidirectional components. Examples where a structure’s unidirectional strain maps are needed include: the
incorporation of strain data into existing strain based displacement [31] and damage detection [32] algorithms; model
updating, including finite element analysis (FEA) and analytical surrogate models [33]; and material characterization [34,35].

In situations where the structure’s unidirectional strain maps are needed, the main challenge is to decompose the SEC’s
additive strain map into its linear strain components along two orthogonal directions. To address this challenge, the authors
have previously developed an algorithm that leverages a dense sensor network (DSN) of SECs to decompose the additive
strain maps. The algorithm assumes a polynomial deflection shape and appropriate boundary conditions and uses a least
squares estimator (LSE) to estimate unidirectional strain maps over the DSN’s area [36]. However in certain cases, such as
the complex loading conditions present in a wind turbine blade [10,37], accurate knowledge of the boundary conditions
can be difficult or impossible to determine. To alleviate this challenge, RSGs were added to the DSN to allow for the real-
time updating of boundary conditions at key locations, therefore, forming a hybrid DSN (HDSN) [38]. This extended LSE algo-
rithm has been demonstrated for damage detection, both numerically [37] and experimentally [10]. While computationally
efficient, the extended LSE algorithm lacks the ability to reproduce nonlinear or complex strain maps due to its selection of a
polynomial deflection shape function. The capability to reproduce nonlinear or complex strain maps is important, because
damage often manifests itself as nonlinearities in a unidirectional strain map (e.g., a thin crack in a plate) [10].

In this study, the authors propose a generic method, termed iterative signal fusion (ISF), that overcomes the difficulty of
capturing high nonlinearities in strain responses and makes strain map reconstruction suitable for local damage detection.
The method adaptively fuses the different sources of strain information from an HDSN containing both SECs and RSGs to
build optimum and unique unidirectional strain maps. Each step of the ISF contains an update process for the strain maps
based on a surrogate modeling technique. Various potential surrogate modeling techniques are based on radial basis func-
tions [39], support vector machines [40], artificial neural networks [41], fuzzy modeling [42,43], and Kriging [44]. In the field
of surrogate modeling, Kriging, or sometimes called Gaussian process regression, is a method of spatial interpolation for
which the approximations are modeled by a Gaussian process derived by proper covariance [44,45]. The authors’ previous
studies showed that Kriging has strong benefits when it comes to processing data with a small number of sample points, a
small number of input variables, and/or when the response shows a highly nonlinear behavior [46]. Due to these benefits,
Kriging is selected in this study as the surrogate modeling technique. Since the RSG and SEC sensors are located at different
locations on the surface of a structure, a simple Kriging model cannot directly be used to generate the unidirectional strain
maps based on the available data. To address this issue, the proposed ISF method adaptively finds the best unbiased predic-
tion of unidirectional strain data at the SEC sensor locations to virtually expand the set of strain data. Consequently, the uni-
directional strain maps can be generated directly from this expanded data set using Kriging, or any other surrogate modeling
technique.

In comparison with the previously developed extended LSE algorithm [38], the newly proposed ISF method is capable of
more accurately modeling highly nonlinear strain maps due to its use of a Gaussian variogram in comparison to the poly-
nomial shape function assumed by the extended LSE algorithm. The use of this Gaussian variogram also reduces the risk
of overfitting that is common in high order polynomial shape functions. Preliminary comparisons between the proposed
ISF method and the extended LSE algorithm have shown that ISF is able to achieve a more accurate approximation of uni-
directional strain maps [47]. While the proposed ISF method is capable of producing more accurate uni-directional strain
maps than the extended LSE algorithm, the extended LSE algorithm is more computationally efficient and may be better sui-
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ted for certain embedded applications where computational power is limited (e.g., calculations performed on a sensing skin
[10,48]).

As with any sensor network, the placement of sensors is a critical component of an SHM system [49]. The optimal sensor
configuration is one that minimizes the likelihood of a type I (false positive) or type II (false negative) error [50]. Therefore, it
is critical to implement an optimal sensor placement strategy for determining the locations of sensors within an HDSN. For
the particular case under study, a network of 40 SECs deployed on a grid (5 � 8) is utilized on an experimental test bench and
an optimal sensor placement algorithm is used to select the optimal RSG sensor locations within the network of SECs. This
optimal sensor placement algorithm [51], previously developed by the authors for use within the extended LSE algorithm,
leverages the intuitive idea that not all potential sensor locations hold the same level of information. The key contributions
of this paper are twofold: (1) it introduces an effective strain decomposition algorithm for the previously proposed SEC-
based sensing skin that does not require the assumption of a shape function; and (2) it validates the proposed SEC-based
sensing skin and the newly proposed ISF method through experimental results obtained from the largest deployment of
the SEC-based sensing skin, both in terms of size and sensor count.

2. Background

This section covers the background that is needed to implement the ISF method. This includes a review of the SEC sensors
and its electromechanical model, a previously investigated genetic algorithm to determine the optimal placement of RSGs
within a network of SECs, and the discussion of a generic Kriging model.

2.1. Soft elastomeric capacitor (SEC)

The SEC is a robust large-area electronic that is inexpensive and easy to fabricate. Its architecture, manufacturing process,
and electromechanical models are presented in Refs. [29,52,53] and reviewed here for completeness. The SEC sensor takes
the form of a parallel plate capacitor, as shown in Fig. 1, where the dielectric is composed of a styrene-ethylene-butadiene-
styrene (SEBS) block co-polymer matrix filled with titania (TiO2) to increase both its durability and permittivity. Its conduc-
tive plates are fabricated using a conductive paint, made from the same SEBS, but filled with carbon black particles, painted
onto each side of the SEBS matrix. Copper contacts, with an electrically conductive adhesive, are added to the conductors on
both the top and bottom plates. These contacts are used for connecting the data acquisition to the SECs with a secure solder
connection. Lastly, a thin layer of conductive paint is applied over the copper contacts to ensure a good connection between
the copper contacts and the conductors, as seen in Fig. 1. Manufacturing of the SEC sensor in various shapes and sizes is rel-
atively simple and does not require any highly specialized equipment or techniques, therefore allowing the technology to be
easily scaled. To ensure the SEC is capable of monitoring the substrate in both tension and compression, the sensor is pre-
stretched during its adhesion to the monitored substrate.

The capacitance (C) of a parallel plate capacitor can be modeled as a non-lossy parallel plate capacitor assuming a sam-
pling rate of less than 1 kHz:
C ¼ e0er
A
h

ð1Þ
where e0 ¼ 8:854 pF/m is the vacuum permittivity, er is the polymer’s relative permittivity, A ¼ d � l is the sensor area of
width d and length l, and h is the thickness of the dielectric as annotated in Fig. 1. Assuming small changes in strain, Eq.
(1) leads to a differential equation that relates a change in strain to a change in capacitance (DC):
DC
C

¼ Dd
d

þ Dl
l
� Dh

h
ð2Þ
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conductor
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Fig. 1. A soft elastomeric capacitor (SEC) sensor with key components and reference axes annotated.
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where Dd=d, Dl=l, and Dh=h, can be expressed as strain ex; ey, and ez, respectively. Assuming a plane stress condition,
ez ¼ �m=ð1� mÞ � ðex þ eyÞwhere m is the sensor material’s Poisson’s ratio taken as m � 0:49 [54]. The relative change in capac-
itance DC can be related to a change in the sensor’s deformation as:
DC
C

¼ kðex þ eyÞ ð3Þ
where k ¼ 1=ð1� mÞ represents the gauge factor of the sensor. Since m � 0:49, the gauge factor can be estimated as k � 2. Eq.
(3) shows that the signal of the SEC varies as a function of the sensor’s additive strain, ex þ ey.

The SEC’s electro-mechanical model presented in Eq. (3) has been validated for both static and quasi-static loading con-
ditions [55]. The linearity of the electro-mechanical model has been validated for mechanical excitation under 15 Hz [52].
Additionally, for mechanical responses up to 40 Hz, an altered electro-mechanical model accounting for the dynamic mate-
rial properties of the SEC was presented in [53], but is not discussed here for brevity.

2.2. Optimal sensor placement

The sensing skin used in this work consists of a network of SECs with a few RSGs distributed into the SEC grid to form an
HDSN. The numbers and locations of RSGs within an HDSN affect the accuracy of the decomposed strain fields. Therefore, it is
important to consider an optimal sensor placement scheme for the RSGs when validating the ISF method. The authors have
previously developed a genetic algorithm with a learning gene pool for selecting optimal RSG sensor locations within a net-
work of SECs [51]. The genetic algorithm leverages the intuitive idea that for a set of potential sensor locations (P), some
sensor locations ðpÞ add little or no information to the estimated system. Conversely, some sensor locations add a measur-
able level of information to the system. Therefore, the goal of the genetic algorithm is to build a set of optimal sensor loca-
tions (P ¼ ½p1 . . . pm�) that minimize the error between the system and its estimated state. This goal is achieved through
linking sensor locations to genes. The probability of these genes (sensor locations) reoccurring are then mutated over gen-
erations by the genetic algorithm. After a sufficient number of generations, only the strongest genes remain and these form a
set of sensor locations that constitute an optimal set of RSG locations within the network of the SECs. In this work, the system
is the true strain maps of the monitored substrate while the estimated state is the strain maps obtained through the ISF
method. The error between the true strain field and its estimated state can be expressed in terms of type I and type II errors
[50,51]. In the case where strain maps are obtained for a structure with the intention of detecting damage, a type I error
(false positive) is the incorrect classification of a healthy state as a damage state, while, a type II error (false negative) is
the failure to detect a structural fault.

Here, a previously developed single objective function [51], borrowed from the field of robust design [56], is used in the
multi-objective problem for decreasing the likelihood of type I and type II errors through the optimal placement of RSGs in
the HDSN. The occurrence of type I errors within the HDSN’s extracted strain maps is reduced through minimizing the mean
absolute error (MAE) between the system and its estimated state. The use of MAE for selecting sensor locations provides an
effective representation of how a structure will perform under various loading conditions. However, if the placement of RSGs
is based solely on the MAE of the system, locations of high disagreement between the estimated and real systems will
develop. In the case of a load-carrying structural component, such an occurrence could result in the component being
stressed passed its design limit (i.e. type II error). Therefore, to reduce the occurrence of type II errors, a second optimization
problem based on minimizing the maximum difference between the system and its estimated state (i.e. strain value) at any
point on a strain map is introduced, defined as Emax. The bi-objective optimization problem (type I and II errors) can be sim-
plified into a single objective function through a straightforward scalarization approach formulated as a linear combination
of the bi-objective optimization problem. Considering n possible sensor locations in P, a single objective problem for opti-
mizing the placement of m sensors (0 6 m 6 n) can be formulated as,
minimize
P

fit ¼ ð1� aÞMAEðPÞ
MAE0 þ a

EmaxðPÞ
E0
max

subject to P ¼ ½p1 . . .pm�T 2 P

ð4Þ
where a is a user-defined scalarization factor used to weigh both objective functions (0 6 a 6 1) and MAE0 and E0
max are fac-

tors used for normalizing MAE and Emax. While the selection of a depends on the structure’s ability to tolerate type I or type II
errors, the value of 0.5 has been shown to be a suitable value for similar problems [51].

2.3. Kriging (Gaussian Process Regression)

Kriging performs two main steps simultaneously: (1) it builds a trend function h xð Þb based on the available data; and (2)
it constructs a Gaussian process using the residuals Z [44]. The Kriging-approximated model of the true response GðxÞ takes
the following form
Ĝ xð Þ ¼ h xð Þbþ Z xð Þ ð5Þ
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where Z xð Þ is a Gaussian process with zero mean, variance s2, and a correlation matrix W. The objective is to capture the
general trend or the largest variance in the data using the regression function and interpolate the residuals using the Gaus-
sian process. The elements of matrix W are derived by the kernel function that can take different forms to model the spatial
correlation in random space. One popular choice is the squared exponential kernel with a vector of hyper-parameters h [57]:
wðxi;xjÞ ¼ exp �1
2
ðxi � xjÞTdiagðhÞ�2ðxi � xjÞ

� �
ð6Þ
where xi and xj are two arbitrary points in the input space. The hyper-parameters determine the smoothness of the predic-
tion, and are estimated by maximizing the likelihood of observations given W. Subsequently, using the Sherman-Morrison-
Woodbury formula, the prediction mean lĜ and uncertainty r2

Ĝ
of Kriging are expressed as [57]:
lĜ xð Þ ¼ h xð Þbþ r xð Þ �W�1 � ðy � FbÞ ð7Þ

r2
Ĝ
xð Þ ¼ s2 1� r xð ÞW�1r xð ÞT þ

1� FTW�1r xð ÞT
� �

FTW�1F

2
4

3
5 ð8Þ
where h xð Þ ¼ h1; . . . ; hp
� �T is a vector of p trend functions, y ¼ y1; . . . ; yt½ �T is a vector of t responses, b is the p-element vector

of the coefficients of the trend functions, and r xð Þ ¼ w x;x1ð Þ; . . . ;w x;xtð Þ½ �T is a vector of correlations between the testing

point and t training points. The process variance s2 can be determined as s2 ¼ 1=t � y � Fbð ÞTW�1 y � Fbð Þ. More details about
the Kriging model can be found in reference [57].
3. Iterative Signal Fusion (ISF)

This work proposes the new ISF method for strain map reconstruction, with the objective to minimize the loss of infor-
mation when fusing the various signals from HDSNs. To build strain maps from a DSN with a single type of sensor, one may
simply use traditional surrogate modeling techniques (e.g. Kriging) when the source of strain data is limited to the one type
of sensor, provided the strain data is obtained for the correct orientation. However, in the HDSN of interest both unidirec-
tional and additive strain data are collected at different RSG and SEC sensor locations (see Fig. 4(b)). In addition, the different
sensing systems are measuring the same physical phenomenon and thus a high correlation among the unidirectional and
additive strain data can be expected. Therefore, a direct implementation of any traditional surrogate modeling technique
would not leverage all potential information in the unidirectional strain map reconstruction. To overcome this challenge,
the proposed ISF method adaptively fuses the multiple sources of strain information from both the SECs and RSGs to build
an optimal prediction of the unidirectional strain maps. It follows that a high correlation among the reconstructed unidirec-
tional and additive strain models is considered. In what follows, the traditional method and proposed methods are explained
in the form of two scenarios.

3.1. Scenario 1 - Traditional method

First, consider the scenario where no information fusion is applied. The strain measurements collected by an HDSN can be
grouped into three data sets (see the solid-line boxes in Fig. 2): (1) x-direction strains (ex) at the location of RSG�x sensors
(IRSG�x), (2) y-direction strains (ey) at the location of RSG�y sensors (IRSG�y), and (3) additive strains (ex þ ey) at the location of

SEC sensors (ISEC). Next, taking O as the measured strain data, superscripts are added to denote sensor type/locations and
subscripts are added to denote strain map type. For example, OSEC

exþey represents the additive strain data at the locations of
5ORSG−x

RSG −y

+
SEC

+

RSG−x signal

RSG−y signal

SEC signal

strain map

strain map

+

strain map

Kriging 
model

IRSG −x IRSG −y ISEC

Fig. 2. Flowchart of unidirectional strain map reconstruction using a traditional Kriging method.
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the SEC sensors while ORSG�x
exþey represents the additive strain data at the location of the RSG�x sensors. As shown in Fig. 2, tra-

ditional surrogate modeling techniques such as Kriging build the model for each of the three available strain data sets (i.e.
ORSG�x
ex ;ORSG�y

ey , and OSEC
exþey ) separately and independently. Therefore, the ex strain map, the ey strain map, and the ex þ ey strain

map at an arbitrary point ðx; yÞ on the surface of a structure are defined as:
ex ¼ GP ðx; yÞjD ¼ fðIRSG�x;ORSG�x
ex Þg

� �
ð9Þ

ey ¼ GP ðx; yÞjD ¼ fðIRSG�y;ORSG�y
ey Þg

� �
ð10Þ

ex þ ey ¼ GP ðx; yÞjD ¼ fðISEC;OSEC
exþeyÞg

� �
ð11Þ
where GPððx; yÞjDÞ denotes the prediction at the arbitrary point ðx; yÞ in the 2-D input space using the Gaussian process or
Kriging model which is trained based on the data set D. In Scenario 1, each model is built using a separate data set and it
follows that this scenario does not consider any correlation among the built models. For instance, the SEC sensor data is
not used for constructing either the ex strain map or the ey strain map.

3.2. Scenario 2 - Proposed method

Second, consider a scenario that leverages the correlation among the different sources of data in constructing the unidi-
rectional strain maps. The ISF method is proposed based on this premise. To fuse the different sources of information, the
proposed ISF method iteratively exploits all three strain measurement sets to estimate the strain responses at sensor loca-
tions where such responses are not measured. Fig. 3 shows the flowchart of the ISF method. A solid-line box denotes a
directly measured strain and a dashed-line box denotes a strain that is not directly measured and needs to be estimated
using the ISF method. To this end, Kriging is used to find the best unbiased prediction of strain data at the dashed-line boxes
using the available data sets (i.e. RSG�x, RSG�y, and SEC senor data) as the training data sets. It follows that the unidirec-
tional stain maps can be generated directly from Kriging or any other surrogate modeling techniques based on the expanded
data sets at all solid-line and dashed-line boxes.

Algorithm 1. Procedure of ISF using Kriging to construct the strain maps
1:
RSG−x s

RSG−y s

SEC sig
Build the initial Kriging model for all three strain maps
3

1

2 4

4

5

6

1

ORSG−x

RSG −y

+
SEC

SEC

SECRSG −y

RSG −x

+
RSG −x

+
RSG −y

IRSG −x IRSG −y ISEC

+

ignal

ignal

nal

Kriging 
model

5

Fig. 3. Flowchart of the proposed ISF method.
.Eqs. (12)–(14)

2:
 Calculate the error estimator n
 .Eq. (21)

3:
 while n > n0 do
4:
 Step 1: ey map at RSG�x sensors location
 .Eq. (15)

5:
 Step 2: ex þ ey strain map at RSG�x sensors location
 .Eq. (16)

6:
 Step 3: ex þ ey strain map at RSG�y sensors location
 .Eq. (17)

7:
 Step 4: ex strain map at RSG�y sensors location
 .Eq. (18)

8:
 Step 5: ex strain map at SEC sensors location
 .Eq. (19)

9:
 Step 6: ey strain map at SEC sensors location
 .Eq. (20)

10:
 Calculate the error estimator n
 .Eq. (21)

11:
 end while
12:
 Build the final Kriging models
 .Eqs. (22) and (23)
strain map

strain map

+

strain map
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In Fig. 3, all nine possible strain data sets are shown in the main middle block. The three solid-line boxes represent the
available strain data sets and the six dashed-line boxes show the unavailable data sets for which one attempts to find the
best unbiased predictions (called virtual data set). A pseudo-code of the proposed method is provided in Algorithm 1. The
algorithm starts with finding initial guesses for the virtual data sets using the available data sets:
½ORSG�y
ex ;OSEC

ex � ¼ GP IRSG�y; ISECjD ¼ fIRSG�x;ORSG�x
ex g

� �
ð12Þ

½ORSG�x
ey ;OSEC

ey � ¼ GP IRSG�x; ISECjD ¼ fIRSG�y;ORSG�y
ey g

� �
ð13Þ

½ORSG�x
exþey ;ORSG�y

exþey � ¼ GP IRSG�x; IRSG�yjD ¼ fISEC;OSEC
exþeyg

� �
ð14Þ
After finding the initial guesses, the virtual data sets are updated iteratively until the optimal prediction is achieved. As
shown by the small arrows in Fig. 3, each iteration consists of six sequential steps, each of which updates a Kriging (or strain
response) model with the most recent strain measurements/estimates and uses the updated model to estimate the strain
responses pertaining to one of the virtual data sets. Step 1 estimates ey at IRSG�x (virtual data set ORSG�x

ey ) based on all available

y-strain measurements/estimates, ORSG�y
ey and OSEC

ey , with the following form:
ORSG�x
ey ¼ GP IRSG�xjD ¼ fðIRSG�y;ORSG�y

ey Þ; ðIRSG�y;OSEC
ey Þg

� �
ð15Þ
At Step 2, ORSG�x
ey (i.e. ey at IRSG�x) is used to update the additive strain data ORSG�x

exþey at the same locations:
ORSG�x
exþey ¼ ORSG�x

ey þ ORSG�x
ex ð16Þ
At Step 3, the virtual data set ORSG�y
exþey is updated using a Kriging model trained with the true data set OSEC

exþey and virtual data set

ORSG�x
exþey :
ORSG�y
exþey ¼ GP IRSG�yjD ¼ fðISEC;OSEC

exþey Þ; ðIRSG�x;ORSG�x
exþey Þg

� �
ð17Þ
At Step 4, the updated ORSG�y
exþey is used to predict ORSG�y

ex :
ORSG�y
ex ¼ ORSG�y

exþey � ORSG�y
ey ð18Þ
At Step 5, OSEC
ex is updated using the following equation:
OSEC
ex ¼ GP ISECjD ¼ fðIRSG�x;ORSG�x

ex Þ; ðIRSG�y;ORSG�y
ex Þg

� �
ð19Þ
Lastly, Step 6 updates OSEC
ey using the values solved for in Steps 4 and 5 (Eqs. (18) and (19)):
OSEC
ey ¼ OSEC

exþey � OSEC
ex ð20Þ
After performing the 6 sequential steps, the strain estimates in all virtual data sets (dashed-line boxes) will be updated. The
iteration continues until the level of change in the strain values pertaining to all dashed-line boxes converges close to zero.
To this end, an error estimator is defined as:
n ¼ ORSG�x
ey � GP IRSG�xjD ¼ fðIRSG�y;ORSG�y

ey Þ; ðISEC;OSEC
ey Þg

� �
ð21Þ
If the change in ORSG�x
ey over sequential iterations converges to a same number (i.e. n < n0), then the algorithm is stopped

and the final Kriging models are built based on all measured/estimated ex and ey strain data to reconstruct the unidirectional
strain maps, expanded for the entire surface area of the structure:
ex ¼ GP ðx; yÞjD ¼ fðIRSG�x;ORSG�x
ex Þ; ðIRSG�y;ORSG�y

ex Þ; ðISEC;OSEC
ex Þg

� �
ð22Þ

ey ¼ GP ðx; yÞjD ¼ fðIRSG�x;ORSG�x
ey Þ; ðIRSG�y;ORSG�y

ey Þ; ðISEC;OSEC
ey Þg

� �
ð23Þ
4. Methodology

This section presents the methodology used in validating the ISF method. First, an experimental test bench specifically
designed for validating the ISF method is introduced, followed by the introduction of an FEA model of the test bench that
is used for the numerical validation of the ISF method.



408 M. Sadoughi et al. /Mechanical Systems and Signal Processing 112 (2018) 401–416
4.1. Experimental setup

The test bench developed for validating the ISF method is shown in Fig. 4. An HDSN consisting of 40 SECs and 20 RSGs (10
measuring ex and 10 measuring ey) was deployed onto the surface of a fiberglass plate with a geometry of 500 � 900 � 2.6
mm3, as shown in Fig. 4(a). Fig. 4(b) is a schematic of the sensor layout showing the locations of the SECs and RSGs, where
each RSG location has two RSGs (model #FCA-5-350-11-3LJBT, manufactured by Tokyo Sokki Kenkyujo), individually mea-
suring ex and ey. The RSG locations are numbered 1–10, for later use in selecting RSGs to be utilized as part of the ISF method.
Additionally, the four SECs denoted A, B, C, and D are used for investigating temporal strain data. A yellowing is present on
some of the sensors’ dielectrics (see sensors A and C for example). This yellowing does not appear to affect the sensors’ strain
measurements, as it will be discussed later in this work. The plate’s left-hand side is bolted to an aluminum support (12.7 �
76.2 � 500 mm3) to form a rigid connection. The rigid connection was added to eliminate the strain complexities that would
be present if the hinges were connected directly to the fiberglass plate. This rigid connection is then attached to the frame
through a pinned connection. The right-hand side of the plate is restrained in the vertical direction through the use of two
lightly greased rods of diameter 12.7 mm to form a roller connection. Each SEC covers an area of 38 � 38 mm2 and these SEC
sensors are deployed in a 5 � 8 grid array. The center of an SEC sensor is used as the location of the sensor in the ISF method.
The SEC and RSG data are sampled simultaneously at 17 samples per second. The SECs are measured using a custom-built
data acquisition system that includes active shielding in the cable to remove the cable’s parasitic capacitance. The RSGs are
measured using three quarter bridge analog input modules (NI-9236, manufactured by National Instruments) mounted in a
chassis (cDAQ-9178, manufactured by National Instruments). Additionally, the same chassis is used to obtain measurements
from the LVDT (model #0244, manufactured by Trans-Tek) measured through a 16-bit analog input module (NI-9205) while
also providing a simultaneous trigger source for the SEC and RSG DAQs through a sourced digital output (NI-9472, manufac-
tured by National Instruments).

Two experimental load cases are considered during the course of this work. For load case 1, the plate is excited with a
displacement controlled force at the center of the plate, as annotated in Fig. 4, sourced from a stepper motor located under
the plate. The excitation force is a 20 mm sinusoidal load at 0.25 Hz. Load case 2 uses the same driving displacement and
frequency, but includes a 0.5 kg mass added to the edge of the plate (see Fig. 4(b)) to introduce some complexities into
the strain maps. To eliminate any high-frequency noise in the SEC signal, a fifth order Butterworth filter with a cutoff fre-
quency of 10 Hz was applied to the raw SEC signals. No filtering was applied to the RSG signals.
4.2. FEA model

Numerical validation for the ISF method is performed through an FEA model of the experimental test bench created in
Abaqus [58]. The FEA model included the fiberglass plate and the rigid aluminum connection that connects the pinned con-
nections to the fiberglass plate. It was constructed using 298,065 eight-node brick elements with 1 integration point to allow
for simple modeling of the connection between the fiberglass plate and the rigid aluminum connector. Constraints were
modeled as a pinned connection at the plate’s left-hand side and a roller connection on the plate’s right-hand side. All mate-
rials were considered to be isotropic. In the fiberglass plate, nine elements are used through its thickness to prevent shear
locking. A convergence test was performed and the selected model parameters yielded an error of less than 1% when com-
pared to the FEA model with 1.2 million elements. The key parameters of the FEA model used in this numerical validation are
listed in Table 1, where the material constants for the aluminum were taken from the material’s data sheet and the material
properties for the fiberglass were obtained experimentally from material drops. Similar to the experimental validation, two
load cases are considered: (1) load case 1 consists of the plate displaced 20 mm upward at the middle and (2) load case 2
(a) (b)

RSG & LVDT DAQ

SEC
DAQ

rigid support

roller
pin

loading
connection

SEC RSG

LVDT

A B C D

1
2 3

4 5 6 7

8 910

loading connection

added mass location

Fig. 4. Experimental setup used for validating the proposed method: (a) picture of the test bench with key components annotated and (b) schematic of the
test bench showing the locations of the sensors, loading point, and added mass.



Table 1
Parameters used in constructing the FEA model.

Parameter Value Parameter Value

Abaqus element type C3D8R Young’s Modulus (aluminum) 68.9 GPa
Element type Linear brick Poisson’s ratio 0.21 (aluminum) 0.33
Element nodes 8 Density (aluminum) 2700 kg=m3

Element integration points 1 Young’s Modulus (fiberglass) 15 GPa
Elements total 298,065 Poisson’s ratio (fiberglass) 0.21
Elements (aluminum connection) 32,340 Density (fiberglass) 4500 kg=m3

Elements (fiberglass plate) 265,725 Plate dimensions 500 � 900 � 3.18 mm3
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consists of the same displacement but with the addition of a 0.5 kg load at the center along the top edge, as shown in Fig. 4
(b).

Optimal sensor placement using the genetic algorithm presented in [51] and reviewed in Section 2.2 was performed using
the results for both load case 1 and 2. The genetic algorithm was solved over 500 generations using a population of 50 off-
springs per generation. An initial guess for the genetic algorithm was generated by finding the lowest MAE for a set of 50
randomly selected RSG sensor locations. Then, MAE0 and E0

max were set by solving for the MAE and point of maximum dis-
agreement (Emax) for the initial guess. Table 2 reports the RSG sensors, numbered to correspond with the RSG sensor loca-
tions depicted in Fig. 4(b), used for developing the strain maps. When calculating the error between the FEA and ISF
generated strain maps, every point on the FEA model was used excluding a 50 � 50 mm2 square around the loading point.
This was excluded as the FEA creates relatively high, highly localized strain values around the 30 mm circular loading point
used in the FEA model to simulate the washer used in the real experimental setup.
5. Results

This section presents the numerical and experimental validation results for the proposed ISF method. First, the temporal
data results for SEC sensors are provided to show the level of noise in strain measurements. Next, a structured numerical
example that studies the effect of increasing the number of iterations of the proposed ISF method is presented. This is fol-
lowed by an investigation on the effect of the number of RSGs on the accuracy of the built unidirectional strain maps. Then
the proposed method is further verified via an experimental procedure.
5.1. Temporal strain data

Fig. 5 presents the temporal data results for sensors A, B, C, and D as denoted in Fig. 4(b). These sensors were selected to
demonstrate the range of SEC sensor signals under varying strain conditions, including two sensors that experienced the yel-
lowing of the dielectric discussed in Section 4.1. For clarity, only every other strain data point is reported for an individual
SEC sensor with its corresponding marker type. The raw SEC signal is presented as a hollow marker while the signal filtered
with a low-pass Butterworth filter is presented as a filled marker on a dotted line. As shown in Fig. 5, sensor D experiences
the highest level of noise, which is due in part to the sensor having the longest cable at 1.2 m and the lowest level of strain.
However, even with the high noise level and relatively low localized strain, the filtered signal provides a smooth signal that
can be used for the ISF method.
5.2. Numerical investigation of strain maps

Figs. 6 and 7 demonstrate how increasing the number of iterations in ISF can increase the accuracy of the constructed
strain maps for load cases 1 and 2, respectively. The errors reported in Figs. 6(a) and 7(a) are calculated based on the mean
absolute difference between the true strain maps obtained through FEA and those obtained though ISF. For these examples,
the ISF based strain maps were obtained using 8 optimally placed RSGs (Table 2). The first row in Figs. 6(b) and 7(b) show the
unidirectional strain maps obtained using only the RSGs oriented in their respective orientations. This is the method dis-
cussed in Section 3.1 and annotated in Fig. 2. The error associated with these strain maps are labeled as the initial iteration
in Figs. 6(a) and 7(a). The second to the fourth rows present the strain maps obtained by ISF from the initial guess, the first
iteration and the second iteration, respectively. Four important observations can be made from the figures: (1) the strain
maps constructed with the initial guess have very low accuracy; (2) by increasing the number of iterations, the strain maps
obtained through ISF approach their real strain conditions; (3) in both load cases, the results by the proposed method con-
verge to the optimal results only after a few iterations with no significant changes in the accuracy of strain maps thereafter;
and (4) the algorithm converges to the optimal result that should be treated as a local minima of the true system, as
MAE > 0. The last rows in Fig. 6(b) and 7(b) show the true strain maps obtained through FEA for both load cases.



Table 2
Locations of RSGs used in the ISF method.

Number of RSGs used RSGs locations used for ex RSGs used for ey

4 8, 10 3, 7
8 1, 4, 5, 7 1, 8, 9, 10
12 3, 5, 6, 7, 9 1, 4, 5, 6, 7, 8, 10

Fig. 5. SEC signal for sensors A, B, C, and D as denoted in Fig. 4 under load case 1; here, only every other data point is shown for clarity.

Fig. 6. Effect of number of iterations on the accuracy of the strain maps obtained through ISF for load case 1: (a) MAE versus the number of iterations and
(b) strain maps obtained through ISF and FEA.
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5.3. Effect of RSGs on strain maps

Fig. 8 reports the strain maps obtained through the FEA analysis (first row) for both load cases and the strain maps esti-
mated using the ISF method with 4, 8, and 12 RSGs. From the FEA analysis, a difference can be observed in strain maps devel-
oped using load case 1 and those using load case 2, particularly in the ex strain maps. The mass exerts a compressive force on
the top of the plate where the mass is added (see Fig. 4(b) for the location of the added mass). This compressive force reduces
the magnitude of the tensile strain along the top of the plate. The unidirectional strain maps developed using the ISF method
with 4, 8, and 12 optimally placed RSGs (Table 2) are presented on rows 2, 3, and 4, respectively.



Fig. 7. Effect of number of iterations on the accuracy of the strain maps obtained through ISF for load case 2: (a) MAE versus the number of iterations and
(b) strain maps obtained through ISF and FEA.

Fig. 8. Strain maps obtained through the FEA and the ISF method using the experimental data with 4, 8 and 12 RSGs.
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Load case 1, a simpler loading configuration, is generally easily solved for using any numbers of RSGs. The largest points of
disagreement between the FEA and ISF strain maps are around the loading connection. This is as hypothesized, because the
sensor network is relatively sparse compared to the complexity of this local strain topology. In comparison, the more com-
plicated strain topology caused by load case 2 benefits more from the increasing number of strain gauges. With a sufficient
number of RSGs, the reconstructed strain maps try to fit the complex strain topologies around the location of the mass. In
particular, the ISF method with 8 and 12 RSGs benefits from the higher numbers of RSGs as the optimal sensor placement
algorithm selected RSG location #1 for the RSGs that measure ey. This added strain information at a location close to the
added mass allows the ISF method to greatly increase its ability to track the complex strain topology, although this highly
localized information causes the ISF method to overestimate the spatial distribution of the compressive load at top of the
plate, as depicted by the large purple area in the ey strain maps for 8 and 12 RSGs in load case 2.

Next, the effect of increasing the number of RSGs used in the ISF method is investigated and presented in Fig. 9. This study
uses the FEA model’s derived strain maps to better investigate the effect of adding RSGs to the ISF method without consid-
ering the effect of other complications found in experimental testing (i.e., noise). Results are quantified using the error in the
FEA strain maps (MAE and Emax) for both loading conditions. As before, a 50 � 50 mm2 square around the loading point is
Fig. 9. ISF reconstruction error as a function of the number of RSGs used in the algorithm formulation. The error is calculated using both load cases 1 and 2.

Fig. 10. Strain maps obtained through the ISF method using the experimental data with 4, 8, and 12 RSGs.



Fig. 11. Errors, MAE and b, as functions of the plate’s displacement for: (a) load case 1 and (b) load case 2.
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excluded when calculating the error to prevent the highly localized strain results from complicating the investigation. As
expected and plotted in Fig. 9, the introduction of more RSGs into the ISF method results in a reduction of both quantifiable
error values.
5.4. Experimental investigation of strain maps

Here, the experimental implementation of the ISF method is presented. Fig. 10 shows that the ISF method is capable of
reconstructing strain maps for the experimental test plate. While no full-field strain data is available for the experimental
test bench, the algorithm does generate strain maps close to those predicted by the FEA model. This is particularly true in
load case 2 where the ISF method is capable of capturing the complex topology caused by adding the mass to the top of
the plate. Deviations between the FEA model results and the experimental data could be caused by various factors, including
material variations, imperfect loading conditions, and the fact that the FEA model does not account for the added mass and
stiffness from the sensor wires.

Fig. 11 reports the temporal error results for the case with the ISF method with 12 RSGs over a typical load cycle. For this
figure, the error is calculated by using the readings from all 20 RSGs. The RSGs were selected due to their high reliability and
low level of noise. As expected, the error parameters increase when the magnitude of the displacement increases. This is due
to the higher levels of strain in the system. Fig. 11(a) presents the temporal error data for load case 1 while Fig. 11(b) pre-
sents the temporal error data for load case 2. As expected, the errors are consistently higher for load case 2 (Fig. 11(b)) due to
the more complex loading configuration. Fig. 12 presents a video of the test bench operating under load case 1 and the video
file is included as a supplimentary material in the online version of this article.



Fig. 12. Video of the experimental test bench operating under load case 1 with real-time strain data shown on the computer monitor and the post-
processed uni-directional strain maps presented on the left-hand side.
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6. Conclusion

We have proposed a robust method for the development of unidirectional strain maps from the additive strain signal of a
novel large-area electronic, termed the soft elastomeric capacitor (SEC). When deployed in a network configuration, SECs can
cover large-scale surfaces and can be used to reconstruct physics-based features for condition assessment, such as strain
maps and deflection shapes. Given that each SEC measures the summation of the orthogonal strains (i.e. ex þ ey), the pro-
posed method retrieves the magnitude and directional information of strain prior to reconstructing strain maps. The pro-
posed method, termed iterative signal fusion (ISF), adaptively fuses the different sources of signal information (e.g. from
SECs and RSGs) to build best-fit unidirectional strain maps for the monitored structure. Each step of ISF contains an update
process for strain maps based on a Kriging model. We have investigated the accuracy of the proposed method by developing
an experimental test bench which is the largest deployment of the SEC-based sensing skin to date. We have utilized a net-
work of 40 SECs deployed on a grid (5 � 8) and an optimal sensor placement algorithm to select the optimal RSG sensor loca-
tions within the network of SECs. This optimal sensor placement algorithm, previously developed by the authors, leverages
the intuitive idea that not all potential sensor locations hold the same level of information. Two experimental load cases
were considered during the course of this work. These load cases consist of a displacement controlled force at the center
of the experimental plate and a similar load case but with a mass added to the edge of the plate to introduce some complex-
ities into the strain maps. For both load cases, the results show that the proposed ISF method successfully develops strain
maps for the experimental test plate. In addition, a finite element analysis model of the experimental test bench was devel-
oped to numerically verify the accuracy of the proposed ISF method. While no full-field strain data is available for the exper-
imental test bench, we have shown that the results of unidirectional strain maps reconstructed using the ISF method
strongly correlate with the results generated by the numerical finite element analysis model.

Acknowledgements

This work was in part supported by the U.S. National Science Foundation Grant Nos. CNS-1566579 and ECCS-1611333.
This work was also partly supported by the U.S. National Science Foundation Grant No. 1069283, which supports the activ-
ities of the Integrative Graduate Education and Research Traineeship (IGERT) in Wind Energy Science, Engineering and Policy
(WESEP) at Iowa State University. Their support is gratefully acknowledged. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National
Science Foundation.
Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.ymssp.
2018.04.023.

https://doi.org/10.1016/j.ymssp.2018.04.023
https://doi.org/10.1016/j.ymssp.2018.04.023


M. Sadoughi et al. /Mechanical Systems and Signal Processing 112 (2018) 401–416 415
References

[1] P.C. Chang, A. Flatau, S.C. Liu, Review paper: health monitoring of civil infrastructure, Struct. Health Monitor.: Int. J. 2 (3) (2003) 257–267, https://doi.
org/10.1177/1475921703036169.

[2] C.C. Ciang, J.-R. Lee, H.-J. Bang, Structural health monitoring for a wind turbine system: a review of damage detection methods, Measur. Sci. Technol. 19
(12) (2008) 122001, https://doi.org/10.1088/0957-0233/19/12/122001.

[3] D. Adams, J. White, M. Rumsey, C. Farrar, Structural health monitoring of wind turbines: method and application to a HAWT,Wind Energy 14 (4) (2011)
603–623, https://doi.org/10.1002/we.437.

[4] C. Hu, B.D. Youn, T. Kim, P. Wang, A co-training-based approach for prediction of remaining useful life utilizing both failure and suspension data, Mech.
Syst. Sig. Process. 62–63 (2015) 75–90, https://doi.org/10.1016/j.ymssp.2015.03.004.

[5] P. Wang, B.D. Youn, C. Hu, A generic probabilistic framework for structural health prognostics and uncertainty management, Mech. Syst. Sig. Process.
28 (2012) 622–637, https://doi.org/10.1016/j.ymssp.2011.10.019.

[6] J.M.W. Brownjohn, A.D. Stefano, Y.-L. Xu, H. Wenzel, A.E. Aktan, Vibration-based monitoring of civil infrastructure: challenges and successes, J. Civil
Struct. Health Monitor. 1 (3-4) (2011) 79–95, https://doi.org/10.1007/s13349-011-0009-5.

[7] H. Park, Y. Shin, S. Choi, Y. Kim, An integrative structural health monitoring system for the local/global responses of a large-scale irregular building
under construction, Sensors 13 (7) (2013) 9085–9103, https://doi.org/10.3390/s130709085.

[8] J. Kullaa, Distinguishing between sensor fault, structural damage, and environmental or operational effects in structural health monitoring, Mech. Syst.
Sig. Process. 25 (8) (2011) 2976–2989, https://doi.org/10.1016/j.ymssp.2011.05.017.

[9] Y. Hu, L. Huang, W.S.A. Rieutort-Louis, J. Sanz-Robinson, J.C. Sturm, S. Wagner, N. Verma, A self-powered system for large-scale strain sensing by
combining CMOS ICs with large-area electronics, IEEE J. Solid-State Circ. 49 (4) (2014) 838–850, https://doi.org/10.1109/jssc.2013.2294326.

[10] A. Downey, S. Laflamme, F. Ubertini, Experimental wind tunnel study of a smart sensing skin for condition evaluation of a wind turbine blade, Smart
Mater. Struct., doi:https://doi.org/10.1088/1361-665X/aa9349.

[11] Y. Yao, B. Glisic, Detection of steel fatigue cracks with strain sensing sheets based on large area electronics, Sensors 15 (4) (2015) 8088–8108, https://
doi.org/10.3390/s150408088.

[12] A. Deraemaeker, A. Preumont, Vibration based damage detection using large array sensors and spatial filters, Mech. Syst. Sig. Process. 20 (7) (2006)
1615–1630, https://doi.org/10.1016/j.ymssp.2005.02.010.

[13] Y. Yao, S.-T.E. Tung, B. Glisic, Crack detection and characterization techniques-an overview, Struct. Control Health Monitor. 21 (12) (2014) 1387–1413,
https://doi.org/10.1002/stc.1655.

[14] X. Kong, J. Li, W. Collins, C. Bennett, S. Laflamme, H. Jo, A large-area strain sensing technology for monitoring fatigue cracks in steel bridges, Smart
Mater. Struct. 26 (8) (2017) 085024, https://doi.org/10.1088/1361-665x/aa75ef.

[15] K.E. Cramer, Research Developments in Nondestructive Evaluation and Structural Health Monitoring for the Sustainment of Composite Aerospace
Structures at NASA <https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20160012012.pdf>.

[16] S. Pavlopoulou, S. Grammatikos, E. Kordatos, K. Worden, A. Paipetis, T. Matikas, C. Soutis, Continuous debonding monitoring of a patch repaired
helicopter stabilizer: damage assessment and analysis, Compos. Struct. 127 (2015) 231–244, https://doi.org/10.1016/j.compstruct.2015.03.014.

[17] X. Zhao, H. Gao, G. Zhang, B. Ayhan, F. Yan, C. Kwan, J.L. Rose, Active health monitoring of an aircraft wing with embedded piezoelectric sensor/actuator
network: I. Defect detection, localization and growth monitoring, Smart Mater. Struct. 16 (4) (2007) 1208–1217, https://doi.org/10.1088/0964-1726/
16/4/032.

[18] V. Caccese, R. Mewer, S.S. Vel, Detection of bolt load loss in hybrid composite/metal bolted connections, Eng. Struct. 26 (7) (2004) 895–906, https://doi.
org/10.1016/j.engstruct.2004.02.008.

[19] R.M. Ghazi, J.G. Chen, O. Büyüköztürk, Pairwise graphical models for structural health monitoring with dense sensor arrays, Mech. Syst. Sig. Process. 93
(2017) 578–592, https://doi.org/10.1016/j.ymssp.2017.02.026.

[20] S. Luo, P.T. Hoang, T. Liu, Direct laser writing for creating porous graphitic structures and their use for flexible and highly sensitive sensor and sensor
arrays, Carbon 96 (2016) 522–531, https://doi.org/10.1016/j.carbon.2015.09.076.

[21] J.A. Rogers, T. Someya, Y. Huang, Materials and mechanics for stretchable electronics, Science 327 (5973) (2010) 1603–1607, https://doi.org/
10.1126/science.1182383.

[22] M.L. Hammock, A. Chortos, B.C.-K. Tee, J.B.-H. Tok, Z. Bao, 25th anniversary article: the evolution of electronic skin (e-skin): a brief history, design
considerations, and recent progress, Adv. Mater. 25 (42) (2013) 5997–6038, https://doi.org/10.1002/adma.201302240.

[23] M.J. Schulz, M.J. Sundaresan, Smart Sensor System for Structural Condition Monitoring of Wind Turbines: May 30, 2002–April 30, 2006, National
Renewable Energy Laboratory, 2006 <https://pdfs.semanticscholar.org/a38f/83bec8c8d0d5084554f679d2726f07c30baf.pdf>.

[24] V. Giurgiutiu, A. Zagrai, J. Bao, Damage identification in aging aircraft structures with piezoelectric wafer active sensors, J. Intell. Mater. Syst. Struct. 15
(9–10) (2004) 673–687, https://doi.org/10.1177/1045389x04038051.

[25] K.J. Loh, T.-C. Hou, J.P. Lynch, N.A. Kotov, Carbon nanotube sensing skins for spatial strain and impact damage identification, J. Nondestruct. Eval. 28 (1)
(2009) 9–25, https://doi.org/10.1007/s10921-009-0043-y.

[26] A. Burton, J. Lynch, M. Kurata, K. Law, Fully integrated carbon nanotube composite thin film strain sensors on flexible substrates for structural health
monitoring, Smart Mater. Struct. 26(9), doi:https://doi.org/10.1088/1361-665X/aa8105.

[27] M. Hallaji, A. Seppänen, M. Pour-Ghaz, Electrical impedance tomography-based sensing skin for quantitative imaging of damage in concrete, Smart
Mater. Struct. 23 (8) (2014) 085001, https://doi.org/10.1088/0964-1726/23/8/085001.

[28] D. Ryu, K.J. Loh, Strain sensing using photocurrent generated by photoactive p3ht-based nanocomposites, Smart Mater. Struct. 21 (6) (2012) 065016,
https://doi.org/10.1088/0964-1726/21/6/065016.

[29] S. Laflamme, M. Kollosche, J.J. Connor, G. Kofod, Robust flexible capacitive surface sensor for structural health monitoring applications, J. Eng. Mech.
139 (7) (2013) 879–885, https://doi.org/10.1061/(asce)em.1943-7889.0000530.

[30] S. Laflamme, L. Cao, E. Chatzi, F. Ubertini, Damage detection and localization from dense network of strain sensors, Shock Vib. 2016 (2016) 1–13,
https://doi.org/10.1155/2016/2562949.

[31] B. Pan, K. Qian, H. Xie, A. Asundi, Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review, Measur. Sci.
Technol. 20 (6) (2009) 062001, https://doi.org/10.1088/0957-0233/20/6/062001.

[32] J. Cuadra, P.A. Vanniamparambil, K. Hazeli, I. Bartoli, A. Kontsos, Damage quantification in polymer composites using a hybrid NDT approach, Compos.
Sci. Technol. 83 (2013) 11–21, https://doi.org/10.1016/j.compscitech.2013.04.013.

[33] E. Tuegel, The airframe digital twin: some challenges to realization, in: 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials
Conference&lt;BR&gt;20th AIAA/ASME/AHS Adaptive Structures Conference&lt;BR&gt;14th AIAA, American Institute of Aeronautics and Astronautics,
2012, doi:https://doi.org/10.2514/6.2012-1812.

[34] S.V. Lomov, D.S. Ivanov, I. Verpoest, M. Zako, T. Kurashiki, H. Nakai, J. Molimard, A. Vautrin, Full-field strain measurements for validation of meso-FE
analysis of textile composites, Compos. Part A: Appl. Sci. Manuf. 39 (8) (2008) 1218–1231, https://doi.org/10.1016/j.compositesa.2007.09.011.

[35] H.F. Poulsen, J.A. Wert, J. Neuefeind, V. Honkimäki, M. Daymond, Measuring strain distributions in amorphous materials, Nat. Mater. 4 (1) (2004) 33–
36, https://doi.org/10.1038/nmat1266.

[36] J. Wu, C. Song, H.S. Saleem, A. Downey, S. Laflamme, Network of flexible capacitive strain gauges for the reconstruction of surface strain, Measur. Sci.
Technol. 26 (5) (2015) 055103, https://doi.org/10.1088/0957-0233/26/5/055103.

[37] A. Downey, F. Ubertini, S. Laflamme, Algorithm for damage detection in wind turbine blades using a hybrid dense sensor network with feature level
data fusion, J. Wind Eng. Indust. Aerodyn. 168 (2017) 288–296, https://doi.org/10.1016/j.jweia.2017.06.016.

https://doi.org/10.1177/1475921703036169
https://doi.org/10.1177/1475921703036169
https://doi.org/10.1088/0957-0233/19/12/122001
https://doi.org/10.1002/we.437
https://doi.org/10.1016/j.ymssp.2015.03.004
https://doi.org/10.1016/j.ymssp.2011.10.019
https://doi.org/10.1007/s13349-011-0009-5
https://doi.org/10.3390/s130709085
https://doi.org/10.1016/j.ymssp.2011.05.017
https://doi.org/10.1109/jssc.2013.2294326
https://doi.org/10.1088/1361-665X/aa9349
https://doi.org/10.3390/s150408088
https://doi.org/10.3390/s150408088
https://doi.org/10.1016/j.ymssp.2005.02.010
https://doi.org/10.1002/stc.1655
https://doi.org/10.1088/1361-665x/aa75ef
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20160012012.pdf
https://doi.org/10.1016/j.compstruct.2015.03.014
https://doi.org/10.1088/0964-1726/16/4/032
https://doi.org/10.1088/0964-1726/16/4/032
https://doi.org/10.1016/j.engstruct.2004.02.008
https://doi.org/10.1016/j.engstruct.2004.02.008
https://doi.org/10.1016/j.ymssp.2017.02.026
https://doi.org/10.1016/j.carbon.2015.09.076
https://doi.org/10.1126/science.1182383
https://doi.org/10.1126/science.1182383
https://doi.org/10.1002/adma.201302240
https://pdfs.semanticscholar.org/a38f/83bec8c8d0d5084554f679d2726f07c30baf.pdf
https://doi.org/10.1177/1045389x04038051
https://doi.org/10.1007/s10921-009-0043-y
https://doi.org/10.1088/1361-665X/aa8105
https://doi.org/10.1088/0964-1726/23/8/085001
https://doi.org/10.1088/0964-1726/21/6/065016
https://doi.org/10.1061/(asce)em.1943-7889.0000530
https://doi.org/10.1155/2016/2562949
https://doi.org/10.1088/0957-0233/20/6/062001
https://doi.org/10.1016/j.compscitech.2013.04.013
https://doi.org/10.2514/6.2012-1812
https://doi.org/10.1016/j.compositesa.2007.09.011
https://doi.org/10.1038/nmat1266
https://doi.org/10.1088/0957-0233/26/5/055103
https://doi.org/10.1016/j.jweia.2017.06.016


416 M. Sadoughi et al. /Mechanical Systems and Signal Processing 112 (2018) 401–416
[38] A. Downey, S. Laflamme, F. Ubertini, Reconstruction of in-plane strain maps using hybrid dense sensor network composed of sensing skin, Measur. Sci.
Technol. 27 (12) (2016) 124016, https://doi.org/10.1088/0957-0233/27/12/124016. http://stacks.iop.org/0957-0233/27/i=12/a=124016.

[39] J. Park, I.W. Sandberg, Universal approximation using radial-basis-function networks, Neural Comput. 3 (2) (1991) 246–257, https://doi.org/10.1162/
neco.1991.3.2.246.

[40] C. Cortes, V. Vapnik, Support-vector networks, Mach. Learn. 20 (3) (1995) 273–297, https://doi.org/10.1007/bf00994018.
[41] R.J. Schalkoff, Pattern Recognition, Wiley Online Library, 1992.
[42] J. Medina, M. Ojeda-Aciego, Multi-adjoint t-concept lattices, Inf. Sci. 180 (5) (2010) 712–725, https://doi.org/10.1016/j.ins.2009.11.018.
[43] C. Pozna, N. Minculete, R.-E. Precup, L.T. Kóczy, Á. Ballagi, Signatures: definitions, operators and applications to fuzzy modelling, Fuzzy Sets Syst. 201

(2012) 86–104, https://doi.org/10.1016/j.fss.2011.12.016.
[44] C.E. Rasmussen, Gaussian Processes in Machine Learning, Springer, Berlin Heidelberg, 2004, https://doi.org/10.1007/978-3-540-28650-9_4.
[45] M. Sadoughi, C. Hu, C.A. MacKenzie, A.T. Eshghi, S. Lee, Sequential exploration-exploitation with dynamic trade-off for efficient reliability analysis of

complex engineered systems, Struct. Multidisc. Optim., doi:https://doi.org/10.1007/s00158-017-1748-7.
[46] M.K. Sadoughi, M. Li, C. Hu, C.A. Mackenzie, High-dimensional reliability analysis of engineered systems involving computationally expensive black-

box simulations, in: Volume 2B: 43rd Design Automation Conference, ASME, 2017, https://doi.org/10.1115/detc2017-68273.
[47] M. Sadoughi, A. Downey, C. Hu, S. Laflamme, An iterative signal fusion method for reconstruction of in-plane strain maps from strain measurements by

hybrid dense sensor networks, in: 2018 AIAA Information Systems-AIAA Infotech @ Aerospace, American Institute of Aeronautics and Astronautics,
2018, https://doi.org/10.2514/6.2018-0467.

[48] J.P. Lynch, A. Sundararajan, K.H. Law, A.S. Kiremidjian, E. Carryer, Embedding damage detection algorithms in a wireless sensing unit for operational
power efficiency, Smart Mater. Struct. 13 (4) (2004) 800–810, https://doi.org/10.1088/0964-1726/13/4/018.

[49] T.-H. Yi, H.-N. Li, Methodology developments in sensor placement for health monitoring of civil infrastructures, Int. J. Distrib. Sensor Netw. 8 (8) (2012)
612726, https://doi.org/10.1155/2012/612726.

[50] E.B. Flynn, M.D. Todd, A bayesian approach to optimal sensor placement for structural health monitoring with application to active sensing, Mech. Syst.
Sig. Process. 24 (4) (2010) 891–903, https://doi.org/10.1016/j.ymssp.2009.09.003.

[51] A. Downey, C. Hu, S. Laflamme, Optimal sensor placement within a hybrid dense sensor network using an adaptive genetic algorithm with learning
gene pool, Struct. Health Monitor. (2017), https://doi.org/10.1177/1475921717702537, 147592171770253.

[52] S. Laflamme, F. Ubertini, H. Saleem, A. D’Alessandro, A. Downey, H. Ceylan, A.L. Materazzi, Dynamic characterization of a soft elastomeric capacitor for
structural health monitoring, J. Struct. Eng. 141 (8) (2015) 04014186, https://doi.org/10.1061/(asce)st.1943-541x.0001151.

[53] H. Saleem, A. Downey, S. Laflamme, M. Kollosche, F. Ubertini, Investigation of dynamic properties of a novel capacitive-based sensing skin for
nondestructive testing, Mater. Eval. 73 (10) (2015) 1384–1391. <http://www.scopus.com/inward/record.url?eid=2-s2.0-84948392242&partnerID=
MN8TOARS>.

[54] A. Wilkinson, M. Clemens, V. Harding, The effects of SEBS-g-maleic anhydride reaction on the morphology and properties of polypropylene/PA6/SEBS
ternary blends, Polymer 45 (15) (2004) 5239–5249, https://doi.org/10.1016/j.polymer.2004.05.033.

[55] S. Laflamme, H.S. Saleem, B.K. Vasan, R.L. Geiger, D. Chen, M.R. Kessler, K. Rajan, Soft elastomeric capacitor network for strain sensing over large
surfaces, IEEE/ASME Trans. Mechatron. 18 (6) (2013) 1647–1654, https://doi.org/10.1109/tmech.2013.2283365.

[56] I. Doltsinis, Z. Kang, Robust design of structures using optimization methods, Comp. Meth. Appl. Mech. Eng. 193 (23–26) (2004) 2221–2237, https://
doi.org/10.1016/j.cma.2003.12.055.

[57] I. Couckuyt, T. Dhaene, P. Demeester, oodace toolbox: a flexible object-oriented kriging implementation, J. Mach. Learn. Res. 15 (2014) 3183–3186.
<http://jmlr.org/papers/v15/couckuyt14a.html>.

[58] Hibbit, Karlsson, Sorensen, ABAQUS/Standard Analysis User’s Manual, Hibbit, Karlsson, Sorensen Inc., USA, 2007.

https://doi.org/10.1088/0957-0233/27/12/124016
http://stacks.iop.org/0957-0233/27/i=12/a=124016
https://doi.org/10.1162/neco.1991.3.2.246
https://doi.org/10.1162/neco.1991.3.2.246
https://doi.org/10.1007/bf00994018
http://refhub.elsevier.com/S0888-3270(18)30225-5/h0205
http://refhub.elsevier.com/S0888-3270(18)30225-5/h0205
https://doi.org/10.1016/j.ins.2009.11.018
https://doi.org/10.1016/j.fss.2011.12.016
https://doi.org/10.1007/978-3-540-28650-9_4
https://doi.org/10.1007/s00158-017-1748-7
https://doi.org/10.1115/detc2017-68273
https://doi.org/10.2514/6.2018-0467
https://doi.org/10.1088/0964-1726/13/4/018
https://doi.org/10.1155/2012/612726
https://doi.org/10.1016/j.ymssp.2009.09.003
https://doi.org/10.1177/1475921717702537
https://doi.org/10.1061/(asce)st.1943-541x.0001151
http://www.scopus.com/inward/record.url?eid=2-s2.0-84948392242&amp;partnerID=MN8TOARS
http://www.scopus.com/inward/record.url?eid=2-s2.0-84948392242&amp;partnerID=MN8TOARS
https://doi.org/10.1016/j.polymer.2004.05.033
https://doi.org/10.1109/tmech.2013.2283365
https://doi.org/10.1016/j.cma.2003.12.055
https://doi.org/10.1016/j.cma.2003.12.055
http://jmlr.org/papers/v15/couckuyt14a.html

	Reconstruction of unidirectional strain maps via iterative signal fusion for mesoscale structures monitored by a sensing skin
	1 Introduction
	2 Background
	2.1 Soft elastomeric capacitor (SEC)
	2.2 Optimal sensor placement
	2.3 Kriging (Gaussian Process Regression)

	3 Iterative Signal Fusion (ISF)
	3.1 Scenario 1 - Traditional method
	3.2 Scenario 2 - Proposed method

	4 Methodology
	4.1 Experimental setup
	4.2 FEA model

	5 Results
	5.1 Temporal strain data
	5.2 Numerical investigation of strain maps
	5.3 Effect of RSGs on strain maps
	5.4 Experimental investigation of strain maps

	6 Conclusion
	Acknowledgements
	Appendix A Supplementary material
	References


